Perancangan Sistem Pendeteksi Kerusakan Motor Induksi Berbasis IoT dengan Menggunakan Sensor Suhu, Arus dan Getaran
DOI:
https://doi.org/10.15575/telka.v11n1.64-75Kata Kunci:
IoT, Motor Induksi, Sistem monitoring, Akurasi, MikrokontrollerAbstrak
Motor induksi dikenal karena keunggulan dalam konstruksi sederhana, ketahanan terhadap beban, dan efisiensi yang tinggi, namun memiliki potensi kerusakan yang dapat mengurangi efisiensi operasional. Sebagai solusi, sistem monitoring kerusakan motor induksi berbasis IoT dikembangkan dengan menggunakan mikrokontroler Arduino yang terintegrasi dengan ESP 01. Pengujian meliputi pengukuran akurasi sensor dalam berbagai kondisi operasi untuk memastikan keandalan deteksi. Tiga sensor utama, yaitu sensor suhu DS18B20, sensor arus SCT-013, dan sensor getaran ADXL335 digunakan untuk mendeteksi suhu, arus, dan getaran. Hasil pengujian menunjukkan bahwa pengujian suhu motor memiliki akurasi hingga 97%, sementara pengujian arus mencapai 84,3%. Sistem pendeteksi kerusakan motor menunjukkan tingkat akurasi 100% dalam mendeteksi kerusakan pada motor. Selain itu, sistem ini dirancang untuk memberikan peringatan dini melalui platform IoT, sehingga pemeliharaan dapat dilakukan sebelum kerusakan signifikan terjadi. Secara keseluruhan, sistem ini menunjukkan efektivitas dalam mendeteksi potensi kerusakan pada motor induksi dengan fokus pada tiga parameter kunci: suhu, arus, dan getaran, yang meningkatkan keandalan dan efisiensi operasional motor induksi.
Induction motors are known for their advantages in simple construction, load resistance, and high efficiency. However, they have the potential for damage that can reduce operational efficiency. As a solution, an IoT-based induction motor fault monitoring system is developed using an Arduino microcontroller integrated with ESP 01. Testing includes measuring sensor accuracy in various operating conditions to ensure detection reliability. Three main sensors DS18B20, SCT-013, and ADXL335 are used to detect temperature, current, and vibration. Test results show that the motor temperature test has an accuracy of up to 97%, while the current test reaches 84.3%. The motor fault detection system demonstrates 100% accuracy in detecting motor faults. Additionally, the system is designed to provide early warnings through the IoT platform, enabling maintenance to be performed before significant damage occurs. Overall, this system demonstrates effectiveness in detecting potential faults in induction motors, focusing on three key parameters: temperature, current, and vibration, which enhances the reliability and operational efficiency of induction motors
Referensi
D. Meidiasha, M. Rif’an, M. Subekti, "Alat pengukur getaran, suara dan suhu motor induksi tiga fasa sebagai indikasi kerusakan motor induksi berbasis Arduino," Journal of Electrical and Vocational Education and Technology, vol. 5 no. 1, pp. 27-31, 2020.
G. Mamatha, A. H. Thejaswi, "Induction Motor Condition Monitoring and Controlling Based on IoT," IJRESM, vol. 4, no. 9, pp. 220–225, 2021.
P. Zhang, Y. Du, T. G. Habetler, B. Lu, "A survey of condition monitoring and protection methods for medium-voltage induction motors," IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 34–46, 2011.
S. Fan, D. Meng, M. Ai, "Efficiency analytical of five-phase induction motors with different stator connections for fracturing pump drives," Energy Reports, vol. 8, pp. 405–413, 2022.
H. Tang, S. Lu, G. Qian, J. Ding, Y. Liu, Q. Wang, "IoT-Based Signal Enhancement and Compression Method for Efficient Motor Bearing Fault Diagnosis," IEEE Sens. J., vol. 21, no. 2, pp. 1820–1828, 2021.
Z. Idrees, Z. Zou, L. Zheng, "Edge computing based IoT architecture for low cost air pollution monitoring systems: A comprehensive system analysis, design considerations & development," Sensors (Basel), vol. 18, no. 9, 2018.
S. Zaiser, M. Buchholz, K. Dietmayer, "Rotor Temperature Modeling of an Induction Motor using Subspace Identification," IFAC-PapersOnLine, vol. 48, no. 28, pp. 847–852, 2015.
K. C. D. Kompella, M. V. G. Rao, R. S. Rao, "Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques," Ain Shams Eng. J., vol. 9, no. 4, pp. 2427–2439, 2018.
Z. Peng, N.J. Kessissoglou, M. Cox, "A study of the effect of contaminant particles in lubricants using wear debris and vibration condition monitoring techniques," Wear, vol. 258, no. 11–12, pp. 1651-1662, 2005.
K. Mykoniatis, "A real-time condition monitoring and maintenance management system for low voltage industrial motors using internet-of-things," Procedia Manuf., vol. 42, pp. 450–456, 2020.
A. K. Verma, P. Akkulu, S. v. Padmanabhan, S. Radhika, "Automatic Condition Monitoring of Industrial Machines Using FSA-Based Hall-Effect Transducer," IEEE Sens. J., vol. 21, no. 2, pp. 1072–1081, 2021.
R. F. Maulana, "Simulasi sistem monitoring getaran, suhu dan arus pada motor induksi," Univ. Muhammadiyah Sumatera Utara, 2022.
X. Chen, Z. Feng, "Induction motor stator current analysis for planetary gearbox fault diagnosis under time-varying speed conditions," Mech. Syst. Signal Process., vol. 140, 2020.
I. G. M. N. Desnanjaya and I. B. A. I. Iswara, “Trainer Atmega32 Sebagai Media Pelatihan Mikrokontroler Dan Arduino”, jurnalresistor, vol. 1, no. 1, pp. 55–64, Apr. 2018.
R. N. Ikhsan, N. Syafitri, "Pemanfaatan Sensor Suhu DS18B20 sebagai Penstabil Suhu Air Budidaya Ikan Hias," in Proc. Seminar Nas. Energi, Telekomunikasi dan Otomasi (SNETO 2021), pp. SNETO - 18, Inst. Teknol. Nas. Bandung, 2021.
R. M. Antosia, "Voltmeter Design Based on ADS1115 and Arduino Uno for DC Resistivity Measurement," JTERA (J. Teknol. Rekayasa), vol. 5, no. 1, 2020, doi: 10.31544/jtera.v5.i1.2019.73-80.
H. Kuemmlee, T. Gross, J. Kolerus, "Machine vibrations and diagnostics the world of ISO," in Industry Applications Society 60th Annual Petroleum and Chemical Industry Conference, Chicago, IL, USA, 2013, doi: 10.1109/PCICon.2013.6666052.
V. Miron-Alexe, "Comparative study regarding measurements of different AC current sensors," in 2016 Int. Symp. Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 2016, pp. 1-6, doi: 10.1109/ISFEE.2016.7803152.










