Sistem Deteksi Penyakit Ikan Koi Menggunakan Metode YOLOv5
DOI:
https://doi.org/10.15575/telka.v11n3.302-314Kata Kunci:
penyakit ikan, ikan koi, pembelajaran mesin, YOLOv5, evaluasi modelAbstrak
Penyebab utama peningkatan kematian di budidaya perikanan adalah penyakit ikan. Salah satu ikan yang mudah terserang hama dan penyakit adalah ikan koi. Identifikasi penyakit ikan koi secara otomatis pada tahap awal merupakan langkah penting untuk mencegah penyebaran penyakit. Deteksi penyakit ikan koi dapat dilakukan melalui berbagai cara yaitu pemeriksaan visual, penggunaan sensor fisik, analisis genetik, teknologi citra dan pengolahan citra, biosensor dan biochips, teknologi saringan molekuler, jaringan saraf tiruan (artificial neural networks) dan pembelajaran mesin. Sistem deteksi penyakit ikan koi pada penelitian ini menggunakan YOLOv5. Hal ini dikarenakan YOLOv5 memiliki beberapa kelebihan antara lain memiliki tingkat akurasi yang tinggi, dapat mendeteksi secara real time, model ringan, sederhana dalam training, dan open source. Penelitian ini melalui beberapa tahap, yaitu pengumpulan dan penyiapan data, pelatihan model dengan algoritma YOLOv5, serta proses evaluasi terhadap performa model. Pada tahap ini, model dievaluasi berdasarkan nilai accuracy, recall, precision, dan mean Average Precision (mAP). Nilai accuracy sebesar 90% didapatkan sebagai hasil evaluasi model, nilai precision untuk ikan sehat (healthy-fish) sebesar 83,33% sedangkan untuk ikan sakit (sick-fish) sebesar 80%, recall sebesar 100%, dan mean Average Percision (mAP) sebesar 81,67%. Hal ini menunjukan bahwa model mampu mengklasifikasikan secara akurat ikan sehat dan ikan sakit.
The main reason for higher mortality in aquaculture is fish-related diseases. One type of fish that is highly susceptible to pests and diseases is the koi fish. Early-stage automatic identification of koi fish diseases is an essential step in preventing the spread of infection. Koi fish disease detection can be conducted through various methods, including visual inspection, physical sensors, genetic analysis, image technology and image processing, biosensors and biochips, molecular screening technology, artificial neural networks, and machine learning. The disease detection system in this study uses YOLOv5, due to its several advantages: high accuracy, real-time detection capability, lightweight model, simplicity in training, and being open-source. This research comprises a series of steps, starting from data preparation and model training using YOLOv5, to the evaluation process which measures accuracy, precision, recall, and mean Average Precision (mAP). A 90% accuracy was achieved through the evaluation of the model, precision scores were 83.33% for healthy fish and 80% for sick fish. The model achieved a recall score was 100%, with mAP score was 81.67%. This model evaluation confirms the accurate detection of both healthy and sick fish.
Referensi
Y. J. Hardiko, N. Hidayat, and I. Cholissodin, “Diagnosis penyakit ikan koi menggunakan metode Naive Bayes Classifier,” J. Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 5310 – 5316, 2018.
H. Chakravorty, R. Paul, and P. Das, “Image processing technique to detect fish disease,” International Journal of Computer Science and Security (IJCSS), vol. 9, no. 2, pp. 121–131, 2015.
S. Malik, T. Kumar and A. K. Sahoo, “Image processing techniques for identification of fish disease,” In 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), 2017, pp. 55-59
A. Waleed, H. Medhat, M. Esmail, K. Osama, R. Samy and T.M. Ghanim, “Automatic recognition of fish diseases in fish farms,” In 14th International Conference on Computer Engineering and Systems (ICCES), 2019, pp. 201-206
J. Sikder, K. I. Sarek dan U. K. Das, “Fish disease detection system: a case study of freshwater fishes of Bangladesh,” Int. J. Adv. Comput. Sci. Appl.(IJACSA), 2021, vol. 12, no. 6, pp. 867-871.
H. M. Lathifah, L. Novamizanti and S. Rizal, “Fast and accurate fish classification from underwater video using you only look once,” In IOP Conference Series: Materials Science and Engineering, vol. 982, no. 1, p.012003, 2020.
L. Susanti, N. K. Daulay and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Riset Komputer), vol. 10, no.2, pp. 640-647
G. Yu, J. Zhang, A. Chen and R. Wan, “Diseased Fish Detection in the Underwater Environment Using an Improved YOLOV5 Network for Intensive Aquaculture,” Fishes, vol. 8, no. 3, p.169, 2023.
H. Husnan, C. Fatichah and R. Dikairoo, “Deteksi Objek Menggunakan Metode YOLO dan Implementasinya pada Robot Bawah Air,” J. Teknik ITS, vol. 12, no. 3, pp. A221-A226, 2023.
M. Z. Muttaqin, E. Santoso and B. Rahayudi, “Sistem Diagnosis Penyakit Ikan Koi Menggunakan Metode Forward Chaining dan Dempster-Shafer,” J. Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no.8, pp. 2886-2891, 2018.
A. Y. Alin, K. Kusrini and K. A. Yauan, “The Effect of Data Augmentation in Deep Learning with Drone Object Detection,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 17, no.3.
S. M. Nasution and F. M. Dirgantara, “Pedestrian Detection System using YOLOv5 for Advanced Driver Assistance System (ADAS),” J. RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp.715-721, 2023.
W. Li, Z. Zhang, B. Jin and W. Yu, “A Real-Time Fish Target Detection Algorithm Based on Improved YOLOv5,” Journal of Marine Science and Engineering, vol. 11, no. 3, p.572, 2023.
Q. Mohti, R. Wahyudi and H. Mustofa, “Penerapan Metode Yolo V5 Dalam Mendeteksi Penyakit Tanaman Buah Naga,” In STAINS (SEMINAR NASIONAL TEKNOLOGI & SAINS, vol. 3, no. 1, pp. 318-323, 2024.
F. Mattins and C. Whidden, “Evaluating multiple YOLO deep learning models for detecting fish,” [Online]. Available: https://dcsi.cs.dal.ca/wp-content/uploads/2022/07/DCSI-2022_paper_2008.pdf. [Accessed Jan. 16, 2024]
N. Hidayat, S. Wahyudi and A. A. Diaz, “Pengenalan individu melalui identifikasi wajah menggunakan metode You Only Look Once (Yolov5),” UNEJ e-Proceeding, 2022, pp.85-98.
J. Zhong, M. Li, J. Qin, Y. Cui, K. Yang and H. Zhang, “Real-time marine animal detection using YOLO-based deep learning networks in the coral reef ecosystem,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46, pp.301-306, 2022.
N. P. Mohod, G. H. Deshpande, A.C. Jagdale, V. S. Talokar, I. R. Daga and M. M. Deole, “Identification of Fish Species using YOLOv5,” Journal of Emerging Technologies and Innovative Research (JETIR), vol. 10, no. 4, pp. k503-k510, 2023.
Z. Wang, H. Liu, G. Zhang, X. Yang, L. Wen and W. Zhao, “Diseased Fish Detection in the Underwater Environment Using an Improved YOLOV5 Network for Intensive Aquaculture,” Fishes, vol. 8, no. 3, p.169, 2023.
H. Harmiansyah, R. Fil’aini, Z. Mufidah, N. W. A. Utari, J. Hendra, D. Diptaningsari, N. Wardani, Meidaliyantisyah, R. Mawardi, M. A. Mustafid and M. A. Mustafid, “Sistem Smart Detection Penyakit pada Tanaman Kopi Robusta Menggunakan SSD MobileNet V2 sebagai Model Pra-Terlatih.” J. Agrikultura, vol. 34, no. 1, pp.154-162, 2023.
M. D. M. Fauzi, T. A. Mudzakir, C. E. Sumawati and J. Indra, “Deteksi Jenis Penyakit Pada Tanaman Padi Menggunakan Yolo V5,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 5, no. 1, pp. 39-48, 2024.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
S. A. Sabrina and W. F. Al. Maki, “Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” eProceedings of Engineering, vol. 9, no. 3, 2022.
H. Harmiansyah, E. T. Oviana, R. Alpaizon, D. P. Khalifah and P. Dwirotama, “Sistem Deteksi Hama dan Penyakit Tanaman Mangga (Mangifera indica L.) Berbasis Deep Learning Menggunakan Model Pra Latih YOLOv5,” J. Agrikultura, vol. 35, no. 1, pp.151-163, 2024.
G. Thiodorus, N. K. Daulay and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, pp.640-647, 2023.
Z. Wang, H. Liu, G. Zhang, X. Yang, L. Wen, and W. Zhao, "Diseased Fish Detection in the Underwater Environment Using an Improved YOLOv5 Network for Intensive Aquaculture," Fishes, vol. 8, no. 3, p. 169, 2023. [Online]. Available: https://www.mdpi.com/2410-3888/8/3/169. [Accessed May 7, 2025]
X. Li, S. Zhao, C. Chen, H. Cui, D. Li, and R. Zhao, "YOLO-FD: A Fish Disease Detection Method Based on Multi-task Learning," Expert Systems with Applications, vol. 233, p. 121197, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0957417424019523. [Accessed May 7, 2025]
T. Yonghua, Z. Zhipeng, L. Sen, L. Xingtong, R. Hongyang, and W. Tengchuan, "Detecting fish diseases using improved YOLOv8 and multi-label compensation," Transactions of the Chinese Society of Agricultural Engineering, vol. 40, no. 23, pp. 227-234, 2024. [Online]. Available: https://www.aeeisp.com/nygcxb/en/article/doi/10.11975/j.issn.1002-6819.202401159. [Accessed May 7, 2025]
S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2015. [Online]. Available: https://arxiv.org/pdf/1506.01497 [Accessed May 8, 2025]
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.Reed, C.Y.Fu, and A. C. Berg, "SSD: Single Shot MultiBox Detector," In European Conference on Computer Vision (ECCV), pp. 21-37, 2016. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-46448-0_ [Accessed May 8, 2025]
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint arXiv:1804.02767, 2018. [Online]. Available: https://arxiv.org/abs/1804.02767 [Accessed May 8, 2025]










