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Abstract—The high rate of falls incidence among the elderly
calls for the development of reliable and robust fall detection
systems. A number of such systems have been proposed, with
claims of fall detection accuracy of over 90% based on ac-
celerometers and gyroscopes. However, most such fall detection
algorithms have been developed based on observational analysis
of the data gathered, leading to thresholds setting for fall/non-fall
situations. Whilst the fall detection accuracies reported appear
to be high, there is little evidence that the threshold based
methods proposed generalise well with different subjects and
different data gathering strategies or experimental scenarios.
Moreover, few attempts appear to have been made to validate the
proposed methods in real-life scenarios or to deliver robust fall
decisions in real-time. The research here uses machine learning
and particularly decision trees to detect 4 types of falls (forward,
backward, right and left). When applied to experimental data
from 8 male subjects, the accelerometers and gyroscopes based
system discriminates between activities of daily living (ADLs) and
falls with a precision of 81% and recall of 92%. The performance
and robustness of the method proposed has been further analysed
in terms its sensitivity to subject physical profile and training set
size.

Index Terms—Body Sensor Networks, Machine Learning,
MEMS Accelerometers

I. INTRODUCTION

The elderly, many of whom are prone to falls, are the fastest

growing age group of most western populations [4]. According

to a report by the Centre for Social Justice UK [9], falls among

the elderly cost the NHS (National Health Service) more than

£4.6 million per day, including the cost of keeping people

in hospital. One in three people over 65 (3.4 million people)

fall each year in the UK. Also, patients with motor neurone

diseases, such as primary lateral sclerosis (PLS) or stroke,

often have multiple falls in a year. In addition, as pointed out

by Li et al. [7], there is a higher risk of falls associated with

specific careers, such as fire fighting. Consequences of falls

include major soft tissue injuries, fractures or even death [6],

[8]. Although fall detection systems cannot directly prevent

falls, detection can help avoid minor falls being unreported

(thus precluding early diagnosis of developing medical condi-

tions) and reduce the risk of fallen patients, who have been left

immobilised or unconscious by a fall, from being left untreated

for an extended period. The high incidence of falls, combined

with their associated cost, make it imperative for a robust and

effective fall detection solution be developed.

Indeed, much research has gone into finding a solution

to this problem. Only a few sets of tools are available in

hospitals for fall detection and many of which are not effective

in predicting or detecting falls. For instance, according to

Oliver et al. [11], STRATIFY, a fall prediction tool, may

not be optimal for identifying high risk individuals and as

Smith et al. [12] conclude from results from an experiment

with 387 acute stroke patients, STRATIFY performs poorly in

predicting falls in stroke patients.

The research here: i) uses decision trees to detect 4 types

of falls; and ii) uses a moving window filter to reduce

the data rate while maintaining informational content. The

implemented system is based on the SHIMMER (Sensing

Health with Intelligence, Modularity, Mobility and Experimen-

tal Reusability) wireless sensor platform and uses annotated

experimental data from 8 male subjects with heights 162–

189 cm, weights 60–100 kg, and ages 21–33 years.

The rest of this paper is organised as follows: In Section II,

an overview of existing acceleration and angular velocity

based fall detection systems is given. Section III describes the

proposed system for fall detection, including the experimental

setup and data gathering process. The experimental results and

system evaluation are discussed in Section IV. Section V gives

the concluding remarks and identifies areas for future work.

II. RELATED WORK

To detect falls, a number of algorithms based on wear-

able accelerometers and gyroscopes have been proposed. One

approach in common use is to discriminate between ADLs

and falls by threshold values (for acceleration and angular

velocity), set mostly by observational methods for both falls

and ADLs [5], [7], [13]. Nyan et al. [10] investigated syncope

using 3-axis accelerometer and 2-axis gyroscope strapped to

the thigh and waist. They applied unique features of body

kinematics to detect falls during the body’s descending phase.

Bourke and Lyons [1] used a gyroscope mounted on the torso

to measure the pitch and roll angular velocity data. Thresholds

were again used to distinguish between falls and ADLs. Dai

et al. [3] proposed the use of mobile phones as a platform for

fall detection. They developed a fall detection algorithm based

on the phone’s 3D accelerometer. The resultant acceleration

vector and vertical acceleration magnitudes were computed

and set thresholds were used to detect falls. The issue with

setting thresholds based on observational method is that such

threshold methods do not generalise well enough with different

subject. Also, many of these methods above have not been

proven to be applicable in real-time and outside the laboratory.
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The algorithm proposed in this paper attempts to ensure

accurate and repeatable falls detection by using machine learn-

ing decision tree C4.5 to detect four different types of falls

(forward falls, backward falls, and falls towards the right and

left directions). The next section discusses the methodology

used in this experiment.

III. METHODOLOGY

Hardware Platform

To acquire acceleration and angular velocity, two SHIM-

MER sensor nodes were used for data acquisition and trans-

mission from subjects to a remote PC. Each sensor node

consists of a 3D accelerometer and 3D gyroscope, a Bluetooth

device and an MSP430F1611 microcontroller device. The

SHIMMER sensor node is shown in Fig. 1.

The tri-axial gyroscope consists of an InvenSense IDG-500

dual-axis (X, and Y) and ISZ-500 single axis (Z) angular rate

sensor MEMS from Freescale Semiconductor, with a full scale

range ±8.7 rad.s−1, and a sensitivity of 110 mV.rad−1.s. The
tri-axial accelerometer (MMA7260Q) from Freescale Semi-

conductor has a range up to ±6g. The Bluetooth device

(Rovering Network RN-42) has a range exceeding 10 m,

a default transmission rate of 115 kbaud, and is a class 2

Bluetooth module.

Figure 1. Placement of SHIMMER sensor nodes.

Experimental setup

Eight healthy subjects took part in an experiment in which

four types of falls (fall forward, fall backward, and falls toward

the left and right directions) were investigated. The physical

profiles of subjects are shown in Table. III. Subject’s profiles

were investigated to determine whether use of a variety of pro-

files in training of the decision trees increases performance and

whether accuracy is maintained when training and testing on

extreme body weights and heights respectively. Each subject

wore two SHIMMER sensor nodes, one on their chest and the

other on their right thigh (see Fig. 1). The 3D accelerometers

and 3D gyroscopes in each sensor node acquired acceleration

and angular velocity of each subject during the experiments.

Data are sampled at 100 Hz and transmitted via Bluetooth

to a remote PC for further processing. In addition, each

sensor node reading is time stamped and each node timestamp

is transmitted along side their data. Falls and ADLs were

annotated by a custom written application in Labview on

the remote PC. The program timed each activity for 2 mins,

recorded the time for the start and end of each activity, and

signaled the end of each activity. This approach somewhat

automates annotation and reduces the risk of operator error.

Before the start of experiments, the nodes were synchronised

by banging two nodes together. This produces a brief high

acceleration signal that is easily identifiable in the data and

allows for accurate alignment in the annotation and processing

phases.

ADL events

The overall aim of this system is to discriminate between

falls and normal daily activities. During the experiment, pos-

tures and activities such as standing, sitting, lying and walking

were maintained for about 2 mins each. To acquire realistic

ADL data, it is assumed that people will normally engage

in various activities such as making phone calls, reading

books, or talking to other people while maintaining various

postures. Therefore, the data gathering process incorporates

these activities. The experiment starts with standing for 2 mins,

during which a subject uses a phone while standing. At the

end of the 2 mins, the subject goes from standing to sitting on

a chair and remains sitting for another 2 mins. At this stage,

the subject takes a book and reads. From sitting, the subject

goes into a lying posture and while in the lying posture, he

continues to read a book. From the lying posture, the subject

returns to a sitting posture but this time, making a phone call

while sitting. At the end of sitting, the subject starts to walk

and while walking he also makes phone calls.

Fall events

Figure 2. Protocol showing ADLs and Falls during experimentation (time
scale in mins).

Subjects were told to deliberately fall onto a 25 cm thick

cushion and then change from lying to a sitting posture after

few seconds while on the cushion. The time from first impact

on the cushion until the subject finally stands up from after

a fall is about 2 mins. This process was performed for fall

forward, fall backward, and falls in the right and left directions.

The data gathering for both the ADLs and falls was performed
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twice per subject. A summary of the protocol used for the

experimentation is shown in Fig. 2.

Falls annotation

The annotation for a single fall event is shown in Fig 3.

The time for a complete protocol takes an average of 21 mins

per subject, and the time annotation per fall is about 5s. From

the figure, the area annotated as a fall is from 850s to 855s.

This shows that from point A to point B, the subject has been

instructed to fall and in the process of falling. Between points

B and C the subject’s body makes an impact with the cushion

on the floor and a high acceleration data is recorded. After a

fall has occurred, the subject remains in a lying posture at point

C to D. Though, point A to D was annotated as a fall, only

point B to C shows a high acceleration signal. The following

section discusses the data processing, machine learning and

the results obtained.

Figure 3. Fall annotation for a single fall event

IV. RESULTS

In this work C4.5 decision trees were used to learn to dis-

tinguish between Falls and ADLs. Data gathered as described

in Section III was mean filtered and re-sampled at 10Hz, thus

reducing the time required for training. The acceleration and

angular velocity vector magnitudes (VM) for the chest and

thigh region sensor nodes were computed as proposed by Li

et al. [7] and used as features for the trees, together with

the raw data. The use of machine learning in this paper was

inspired by prior work [2] in which a decision tree was trained

to classify various postures with high accuracy in real time.

The output of the decision tree was filtered using a majority

filter over a non-overlapping window of 8 samples (0.8s). The

size of the window was empirically determined. If the majority

of samples within a window identify a fall, the whole of

that window is considered a fall, otherwise that window is

considered as a no-fall. This approach is essential because the

decision made by the tree for a fall or no-fall condition was

based on individual instances of the data thus no history.

The performance of the algorithm was evaluated both at

macro events level, i.e. “real falls” which occurred during

experimentation (a) and also with regard to the match between

the annotation and the decision system (tree followed by filter)

Table I
SUMMARY OF FALL CLASSIFICATION AT MACRO EVENTS LEVEL

Table II
SUMMARY OF DECISION TREE-BASED FALL CLASSIFICATION.

output (b). Note that: the falls annotation identified a fall as a

fixed 5s window; the decision system output has a frequency

of 1.25Hz; the output of the system was said to be a True

Positive (TP) for all its 7 occurrences within a Fall window if

at least one of the decisions was a fall. Multiple occurrences of

fall decisions within a fall annotation window were accepted

as belonging to the single Fall event in that window. Any

occurrence of a fall decision outside the annotated windows

was considered a False Positive (FP). Reversely, any window

annotated as a fall without any occurrence of a fall decision,

was considered a False Negative (FN) for all 7 decision

occurrences.

(a) A total of 64 falls have been performed by the 8 subjects,

over an average time per subject of 42 mins. The number of

correctly classified falls varied from subject to subject, with

the leave one subject out cross-validation procedure showing

that 5 subjects have had (8/8) their falls identified whilst the

rest 3 had between 5/8 and 7/8 identified falls. The number

of False Positives (FPs) also varied from subject to subject,

with a minimum of 3 in 42 mins to a maximum of 26. The

findings from the “Leave N out” cross-validation exercise

are shown in Table I. Whilst a small reduction in TPs is

observed as the size of the training set is reduced, note that

the FPs increase more dramatically. Given the nature of the

experimental protocol (with a fall occurring on average every

5.25 mins of experimental time) and the expectation that falls

in elderly may occur with a frequency of say 1 in 24 hours

at most, one interpretation of the results is to calculate the

frequency of FPs and FNs for a 24 hours period. The system

will produce, over a 3 days period, approximately 5 FPs and

will generate a FN every 12 days approximately.

(b) When considering the decision system output and the

rule above, testing showed that falls were correctly classified

with a precision between 72% and 81% depending on the

number of subjects used for training. The Leave one subject
out cross validation procedure on 7 subjects training set gives
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a mean precision of 81.82% correctly classified samples. A

summary of the results obtained during testing for Leave N
subjects out cross validations are shown in Table II. From

these results, more than 3 subjects are recommended to be

used in training to endure a low standard deviation.

Though the accuracy for the algorithm ranges from 99.45%

for training with 7 subjects and 98.91% for training with 3

subjects, it does not give clear picture of the performance of

the algorithm because of the difference in data size between

ADLs and falls. For a typical subject, data was gathered for

about 42 mins, but only 40s of data represent falls, while the

remaining are for ADLs. The imbalance in data size between

falls and ADLs allow the algorithm to detect ADLs with such

high accuracy and hence reporting overall high accuracy.

Algorithm sensitivity to body profile

The performance of the decision system was further inves-

tigated per subject, using the leave one subject out procedure

(Table III) to determine its sensitivity to body profile. A

subject’s weight and height does not appear to have an impact

on the performance of the decision system presented here.

Further investigation of weight influence for example, on a

tree trained from Subjects 1-5 (which eliminates both heavy

subjects and a lighter subject) showed that the performance

of subjects 6 and 8 on testing was very similar (99.49%

vs 99.60% accuracy). Similar conclusions were drawn for

the influence of height on the system’s performance. Pearson

correlation indexes for “Weight and Accuracy” and “Height

and Accuracy” were 0.022 and 0.045 respectively.

Table III
EFFECT OF BODY PROFILE ON THE PERFORMANCE OF DECISION TREE.

V. CONCLUSIONS AND FURTHER WORK

This paper described a decision trees-based method for fall

detection from 3D accelerometer and gyroscope data. Vector

magnitude of acceleration and angular velocity were used as

features for the decision trees. Mean filtering of the data

was performed to reduce data set size ten fold for ease of

training. A majority filter was applied at the output of the

decision tree. Training was performed with subject sets of 3

to 7 subjects with heights in the range of 162 to 189 cm,

weights between 60 and 100 kg and ages between 21 and 33.

Four types of falls were identified with a precision of 72%

for a 3-subjects training set and up to 81% for a 7 subjects

training set. The classifier’s performance does not appear to

be sensitive to training subjects’ physical characteristics. The

decision tree classifier implemented is non-real time, but has

low computational complexity and is thus well suited for real-

time implementation.

Based on the encouraging results obtained, further work will

focus on:

• the detection of pre-fall conditions; experimental data is

aimed to be gathered by using an instrumented balance

board

• more realistic simulation of falls within ethical bounds

• thorough evaluation of the method against commercial

fall detectors with regard to the incidence of false posi-

tives, in particular and

• the investigation of “closer to life” simulation of falls

and also of observing how movement and fall patterns

in general translate from young healthy volunteers to the

elderly.
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