Analisis Perbandingan Kinerja Sistem Radio Over Fiber dan Free Space Optic Dengan Input Sinyal RF Termodulasi QAM
Sari
Kemajuan teknologi saat ini telah memungkinkan untuk menumpangkan sinyal radio frequency (RF) di atas sinyal optik. Selain dapat ditransmisikan melalui fiber optik, sinyal optik juga dapat ditransmisikan melalui udara bebas yang dikenal dengan sistem Free Space Optic (FSO). Sinyal optik yang ditumpangi oleh sinyal RF dan ditransmisikan melalui serat optik dikenal dengan sistem Radio over Fiber (ROF). Pada sistem ROF, dispersi kromatik fiber menyebabkan terjadinya fluktuasi daya pada sinyal radio frequency (RF) yang diterima. Fluktuasi daya ini menyebabkan kinerja sistem ROF mengalami penurunan yang sangat besar pada panjang fiber tertentu. Pada sistem FSO, sinyal optik mengalami redaman yang dipengaruhi oleh kondisi cuaca. Untuk menghindari kesalahan dalam menentukan panjang fiber yang digunakan pada sistem ROF dan jarak antara pemancar dan penerima pada sistem FSO yang dapat mengakibatkan kinerja sistem tidak memenuhi standar sistem komunikasi optik, maka perlu dilakukan pengukuran kinerja dari kedua sistem ini. Kinerja sistem dalam penelitian ini diukur dari nilai Q-factornya. Nilai Q-factor diperoleh dari simulasi menggunakan software OptiSystem. Hasil penelitian ini menunjukkan panjang fiber pada sistem ROF yang perlu dihindari adalah pada panjang fiber 0,9 – 1,3 km, 2,7 – 3,5 km, dan 4,7 – 5 km. Hal ini berlaku pada daya laser 0 maupun 10 dBm. Sedangkan jarak maksimum antara pemancar dan penerima pada sistem FSO 0,5 km saat daya laser sebesar 0 dBm dan 1,6 km pada saat daya laser sebesar 10 dBm.
Current technological advances have made it possible to superimpose radio frequency (RF) signals over optical signals. Besides being transmitted through optical fiber, optical signals can also be transmitted through free air known as Free Space Optic (FSO) system. Optical signals that are superimposed by RF signals and transmitted through optical fibers are known as Radio over Fiber (ROF) systems. In ROF systems, fiber chromatic dispersion causes power fluctuations in the received radio frequency (RF) signal. These power fluctuations cause the performance of the ROF system to decrease greatly at certain fiber lengths. In FSO systems, optical signals experience attenuation which is influenced by weather conditions. To avoid errors in determining the length of fiber used in the ROF system and the distance between the transmitter and receiver in the FSO system which can result in system performance not meeting the standards of optical communication systems, it is necessary to measure the performance of these two systems. System performance in this study is measured by the Q-factor value. The Q-factor value is obtained from simulations using OptiSystem software. The results of this study show that the fiber lengths in the ROF system that need to be avoided are at fiber lengths of 0.9 - 1.3 km, 2.7 - 3.5 km, and 4.7 - 5 km. This applies to both 0 and 10 dBm laser power. Meanwhile, the maximum distance between the transmitter and receiver in the FSO system is 0.5 km when the laser power is 0 dBm and 1.6 km when the laser power is 10 dBm.
Kata Kunci
Teks Lengkap:
PDFDilihat:
Referensi
X. N. Fernando, Radio over fiber for wireless communications: from fundamentals to advanced topics. John Wiley & Sons, 2014.
S. A. Al-Gailani et al., "A survey of free space optics (FSO) communication systems, links, and networks," IEEE Access, vol. 9, pp. 7353-7373, 2020.
G. M. Bonner, B. E. Jones, M. S. Warden, and L. J. McKnight, "Free-space optical links for terrestrial communications and quantum key distribution," in Free-Space Laser Communications XXXVI, 2024, vol. 12877: SPIE, p. 128770U.
Y. Zhu and W. Hu, "Optical access networks for fixed and mobile applications [Invited Tutorial]," Journal of Optical Communications and Networking, vol. 16, no. 2, pp. A118-A135, 2024.
F. Ujang, T. Firmansyah, P. S. Priambodo, and G. Wibisono, "Irregular shifting of RF driving signal phase to overcome dispersion power fading," in Photonics, 2019, vol. 6, no. 4: MDPI, p. 104.
O. Widyarena, G. Hendrantoro, and A. Mauludiyanto, "Kinerja Sistem Komunikasi FSO (Free Space Optics) Menggunakan Cell-site Diversity di Daerah Tropis," Jurnal Teknik ITS, vol. 1, no. 1, pp. A37-A43, 2012.
F. Dheaputro, Y. S. Rohmah, and A. D. Pambudi, "Perancangan Simulator Modulasi Dan Demodulasi 16 Qam Dan 64 Qam Menggunakan Labview," eProceedings of Applied Science, vol. 1, no. 2, 2015.
N. J. Gomes, P. P. Monteiro, and A. Gameiro, Next generation wireless communications using radio over fiber. John Wiley & Sons, 2012.
H. Kashif, M. N. Khan, and A. Altalbe, "Hybrid optical-radio transmission system link quality: link budget analysis," IEEE Access, vol. 8, pp. 65983-65992, 2020.
L. Ananta, M. Rosmiati, and M. fachru Rizal, "Simulasi Peningkatan Keamanan Jaringan Menggunakan Kombinasi Penguat Sinyal Optik," eProceedings of Applied Science, vol. 3, no. 3, 2017.
A. F. Kasmar, "Line Coding dan Kegunaannya," Bandung: Institut Teknologi Bandung, 2016.
R. Singh, M. Ahlawat, and D. Sharma, "Study and performance evaluation of Radio over Fiber using Mach Zehnder Modulator," International Journal of Advanced Research in Computer Science, vol. 8, no. 5, pp. 1095-1100, 2017.
Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®. CRC press, 2019.
“Propagation data required for the design of terrestrial free-space optical links Policy on Intellectual Property Right (IPR)”, Recommendation ITU-R P.1817-1, vol. 1, p. 17, 2012.
DOI: https://doi.org/10.15575/telka.v11n1.97-108
Refbacks
- Saat ini tidak ada refbacks.
Jurnal TELKA terindex oleh :
Didukung oleh :

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.

