Analisis Daya Keluaran pada Kinerja Motor Listrik Tipe Synchronous Berbasis Komputasional

Ferdyanto Ferdyanto, Auditya Farha, James Julian, Fitri Wahyuni, Reda Rizal

Sari


Masalah yang menjadi pertimbangan dalam penggunaan motor listrik adalah daya keluaran yang dihasilkan pada saat motor bekerja. Penelitian ini berfokus pada analisis daya keluaran Permanent Magnet Synchronous Motor (PMSM) yang akan diuji pada kecepatan tertentu serta ditinjau terhadap perubahan sudut torsi tiap putaran. Tujuan penelitian ini adalah mendapatkan analisis daya keluaran dengan karakteristik yang stabil serta kinerja PMSM yang menghasilkan efisiensi sesuai standar. Penelitian menggunakan metode komputasi dengan model finite element analysis (FEA) yang dilakukan dengan menggunakan software. Hasil dari penelitian ini diperoleh performa PMSM dengan arus input sebesar 1.5 kA pada setiap fasa sehingga motor dapat beroperasi dengan kecepatan 13300 rpm serta menghasilkan torsi sebesar 164 Nm. Fluks magnet yang terbentuk berada dalam kondisi stabil dengan nilai 0.02 Wb dan membentuk distribusi medan magnet yang merata pada setiap kumparan stator. Rata-rata daya keluaran maksimum yang dihasilkan jangkar rotor adalah 107.6 kW pada sudut torsi 114°. Penelitian telah berhasil memperoleh analisis daya keluaran pada PMSM melalui metode komputasi. Hasil analisis tersebut dapat menjadi acuan dalam proses manufaktur PMSM.

 

The problem that is considered in the use of electric motors is the output power generated when the motor is working. This research focuses on analyzing the output power of a Permanent Magnet Synchronous Motor (PMSM) which will be tested at a certain speed and looking at changes in torque angle for each rotation. The aim of this research is to obtain an output power analysis with stable characteristics and PMSM performance that produces efficiency according to standards. The research uses computational methods with finite element analysis (FEA) models which are carried out using software. The results of this research obtained PMSM performance with an input current of 1.5 kA in each phase so that the motor can operate at a speed of 13300 rpm and produce a torque of 164 Nm. The magnetic flux formed is in a stable condition with a value of 0.02 Wb and forms an even magnetic field distribution in each stator coil. The average maximum output power produced by the rotor armature is 107.6 kW at a torque angle of 114°. Research has succeeded in obtaining output power analysis on PMSM through computational methods. The results of this analysis can be used as a reference in the PMSM manufacturing process.


Kata Kunci


daya keluaran; rpm; sinkron; sudut torsi

Teks Lengkap:

PDF


Dilihat:
Sari 236 kali
PDF 67 kali

Referensi


P. Lumyong and P. Sarikprueck, “A Study on Induction Motor Efficiency Improvement for Implementing in Electric Vehicle,” in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), IEEE, Oct. 2018, pp. 616–619. doi: 10.23919/ICEMS.2018.8549478

M. F. Rahman, L. Zhong, Md. E. Haque, and M. A. Rahman, “A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 17–22, Mar. 2003, doi: 10.1109/TEC.2002.805200

T. A. Huynh and M.-F. Hsieh, “Comparative Study of PM-Assisted SynRM and IPMSM on Constant Power Speed Range for EV Applications,” IEEE Trans Magn, vol. 53, no. 11, pp. 1–6, Nov. 2017, doi: 10.1109/TMAG.2017.2707125

X. Qiu, W. Huang, and F. Bu, “Torque-angle-based direct torque control for interior permanent-magnet synchronous motor drivers in electric vehicles,” Journal of Power Electronics, vol. 13, no. 6, pp. 964–974, 2013

Y. Li, D. Bobba, and B. Sarlioglu, “Design and Optimization of a Novel Dual-Rotor Hybrid PM Machine for Traction Application,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1762–1771, Feb. 2018, doi: 10.1109/TIE.2017.2739686

Y. Yang et al., “Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications,” IEEE Transactions on Transportation Electrification, vol. 3, no. 1, pp. 86–97, Mar. 2017, doi: 10.1109/TTE.2016.2614972

P. Ramesh and N. C. Lenin, “High Power Density Electrical Machines for Electric Vehicles—Comprehensive Review Based on Material Technology,” IEEE Trans Magn, vol. 55, no. 11, pp. 1–21, Nov. 2019, doi: 10.1109/TMAG.2019.2929145

Y. Pranata, T. Arfianto, and N. Taryana, “Analisis Unjuk Kerja Motor Induksi 3 Fasa Menggunakan Inverter 3 Fasa,” TELKA-Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol, vol. 4, no. 2, pp. 91–102, 2018

I. Wirama, I. Putra, I. Putra, A. A. N. M. Narottama, and A. A. N. G. Sapteka, “Kendali Kecepatan Motor Listrik Satu Phasa Berdasarkan Suhu Ruangan,” TELKA-Telekomunikasi Elektronika Komputasi dan Kontrol, vol. 7, no. 1, pp. 21–28, 2021

J. Julian, F. Wahyuni, L. M. Tua, and N. T. Bunga, “Analisis Motor Listrik Tipe Synchronous dengan Metode Komputasi,” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, pp. 71–78, 2021

Y. Xu, W. Zhang, Y. Huang, and J. Zou, “Reduction method of high-frequency audible PWM noise for three-phase permanent magnet synchronous motors,” Energy Reports, vol. 6, pp. 1123–1129, Dec. 2020, doi: 10.1016/j.egyr.2020.11.066

P. C. da Silva, D. dos Santos Matos, A. Nied, M. S. M. Cavalca, and J. de Oliveira, “Reduction of synchronous reluctance motor currents with minimization of direct and cross saturation magnetic model,” ISA Trans, vol. 111, pp. 223–230, May 2021, doi: 10.1016/j.isatra.2020.11.011

T. Gundogdu and G. Komurgoz, “The Impact of the selection of permanent magnets on the design of permanent magnet machines–a case study: permanent magnet synchronous machine design with high efficiency,” Przegląd Elektrotechniczny, vol. 89, no. 3a, pp. 103–108, 2013

H.-J. Park and M.-S. Lim, “Design of High Power Density and High Efficiency Wound-Field Synchronous Motor for Electric Vehicle Traction,” IEEE Access, vol. 7, pp. 46677–46685, 2019, doi: 10.1109/ACCESS.2019.2907800

M. Sumega, Š. Zoššák, P. Varecha, and P. Rafajdus, “Sources of torque ripple and their influence in BLDC motor drives,” Transportation Research Procedia, vol. 40, pp. 519–526, 2019, doi: 10.1016/j.trpro.2019.07.075

M. Felderer and G. H. Travassos, Contemporary empirical methods in software engineering. Springer, 2020

Y. Guodong, Z. Jibin, X. Yongxiang, L. Yong, H. Jianhui, and W. Qian, “Torque Performance Improvement of a Radial-Flux Slotted Limited-Angle Torque Motor by Tapered Tooth-Tip,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 7, pp. 1–5, Oct. 2016, doi: 10.1109/TASC.2016.2594807

Y. Guodong, X. Yongxiang, Z. Jibin, and W. Guan, “Analysis and Experimental Validation of Dynamic Performance for Slotted Limited-Angle Torque Motor,” IEEE Trans Magn, vol. 53, no. 11, pp. 1–5, Nov. 2017, doi: 10.1109/TMAG.2017.2702190

Y. Guodong, Z. Jibin, X. Yongxiang, W. Qian, W. Baochao, and L. Junlong, “Estimation of Maximum Angular Operation Range for Permanent-Magnet Slotted Limited-Angle Torque Motor,” IEEE Trans Magn, vol. 51, no. 11, pp. 1–5, Nov. 2015, doi: 10.1109/TMAG.2015.2441741

G. Yu, Y. Xu, T. Lin, L. Xiao, J. Zou, and J. Tan, “Nonlinear EMC Modeling and Analysis of Permanent-Magnet Slotted Limited-Angle Torque Motor,” IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8507–8518, Sep. 2021, doi: 10.1109/TIE.2020.3014570

Y. Xu, W. Zhang, Y. Huang, and J. Zou, “Reduction method of high-frequency audible PWM noise for three-phase permanent magnet synchronous motors,” Energy Reports, vol. 6, pp. 1123–1129, Dec. 2020, doi: 10.1016/j.egyr.2020.11.066

R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives. CRC Press, 2017. doi: 10.1201/9781420014235

I. Maciejewski, M. Zlobinski, T. Krzyzynski, and S. Glowinski, “Vibration control of an active horizontal seat suspension with a permanent magnet synchronous motor,” J Sound Vib, vol. 488, p. 115655, Dec. 2020, doi: 10.1016/j.jsv.2020.115655

A. T. De Almeida, F. J. T. E. Ferreira, and J. A. C. Fong, “Standards for Efficiency of Electric Motors,” IEEE Industry Applications Magazine, vol. 17, no. 1, pp. 12–19, Jan. 2011, doi: 10.1109/MIAS.2010.939427




DOI: https://doi.org/10.15575/telka.v9n2.107-116

Refbacks

  • Saat ini tidak ada refbacks.


Jurnal TELKA terindex oleh :


     moraref logo       Crossref logo        sinta logo     base logo


Onesearch logo     IPI logo      Dimensions logo




Didukung oleh :







Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.